If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 9x2 + -6x + 106 = 0 Reorder the terms: 106 + -6x + 9x2 = 0 Solving 106 + -6x + 9x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 11.77777778 + -0.6666666667x + x2 = 0 Move the constant term to the right: Add '-11.77777778' to each side of the equation. 11.77777778 + -0.6666666667x + -11.77777778 + x2 = 0 + -11.77777778 Reorder the terms: 11.77777778 + -11.77777778 + -0.6666666667x + x2 = 0 + -11.77777778 Combine like terms: 11.77777778 + -11.77777778 = 0.00000000 0.00000000 + -0.6666666667x + x2 = 0 + -11.77777778 -0.6666666667x + x2 = 0 + -11.77777778 Combine like terms: 0 + -11.77777778 = -11.77777778 -0.6666666667x + x2 = -11.77777778 The x term is -0.6666666667x. Take half its coefficient (-0.3333333334). Square it (0.1111111112) and add it to both sides. Add '0.1111111112' to each side of the equation. -0.6666666667x + 0.1111111112 + x2 = -11.77777778 + 0.1111111112 Reorder the terms: 0.1111111112 + -0.6666666667x + x2 = -11.77777778 + 0.1111111112 Combine like terms: -11.77777778 + 0.1111111112 = -11.6666666688 0.1111111112 + -0.6666666667x + x2 = -11.6666666688 Factor a perfect square on the left side: (x + -0.3333333334)(x + -0.3333333334) = -11.6666666688 Can't calculate square root of the right side. The solution to this equation could not be determined.
| (D^3-5D+8D-4)y=E^2X | | (4x+10)+4x+x=46 | | 3k^4-k^2-24=0 | | 4x-11=5x+10 | | -3-2.9=-9x-0.5 | | (X+3)(8-x)=0 | | x-11=3x-21 | | 6x+5x-3x=32 | | x^2-4x+y^2+6y+z^2+8z+4=0 | | 72°/180°=x/π | | X+1.2(0.8-X)=0.18 | | 320=3x*x | | 7x-x^2-6=0 | | 320=x+x | | 2*-12-5=-19 | | 54.3x*1.5=8(0.3x-3) | | 72c+6=164 | | 35x^2+150x+135=0 | | 7x^2+50x+27=0 | | 3y+60=2y | | (3u-5)(6-u)=0 | | 4x-9=3x-29 | | 4(x+1)-3(2x-4)=3(x-3) | | (1/25)*(3/35) | | 4x+3x=16*12 | | (24/17)/6 | | p=48-3q^2 | | (9/16)/3 | | 5*(1/8) | | (14/5)/(2/6) | | (4/3)/(4/3) | | (10/3)/(5/12) |